Backpaper examination First semester 2009 B.Math.Hons.First year Algebra I — B.Sury Answer any 5

Q 1.

For a prime p>2, show that exactly half of the elements in the group \mathbf{Z}_p^* are squares.

Hint: Use the squaring map.

Q 2.

If H is any subgroup of finite index in a group G, use the action of G on the set of left cosets of H to prove that H contains a normal subgroup of finite index in G.

Q 3.

Prove that if a p-group P acting on a set with N elements where $p \not| N$, then P fixes a point.

Q 4.

If P is a p-Sylow subgroup of a finite group G, and if N denotes the normalizer of P in G, prove that the normalizer of N in G is N itself. Hint: You may use Sylow's second theorem for the group N.

Q 5.

Define the product IJ of two ideals I,J in a commutative ring. Prove that

$$IJ \subset I \cap J \subset I, J \subset I + J.$$

Give examples of ideals I,J in the ring ${\bf Z}$ to show that each of these inclusions can be proper.

Q 6.

If A is an integral domain (with unity), prove that A[X] is a PID if and only if A is a field.

Q 7.

Let n be a natural number. Describe explicitly, the smallest subring of ${\bf C}$ which contains all the n-th roots of unity.